A tutorial on Newton methods for constrained trajectory optimization and relations to SLAM, Gaussian Process smoothing, optimal control, and probabilistic inference

نویسنده

  • Marc Toussaint
چکیده

Many state-of-the-art approaches to trajectory optimization and optimal control are intimately related to standard Newton methods. For researchers that work in the intersections of machine learning, robotics, control, and optimization, such relations are highly relevant but sometimes hard to see across disciplines, due also to the different notations and conventions used in the disciplines. The aim of this tutorial is to introduce to constrained trajectory optimization in a manner that allows us to establish these relations. We consider a basic but general formalization of the problem and discuss the structure of Newton steps in this setting. The computation of Newton steps can then be related to dynamic programming, establishing relations to DDP, iLQG, and AICO. We can also clarify how inverting a banded symmetric matrix is related to dynamic programming as well as message passing in Markov chains and factor graphs. Further, for a machine learner, path optimization and Gaussian Processes seem intuitively related problems. We establish such a relation and show how to solve a Gaussian Process-regularized path optimization problem efficiently. Further topics include how to derive an optimal controller around the path, model predictive control in constrained k-order control processes, and the pullback metric interpretation of the Gauss-Newton approximation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trajectory Optimization of Cable Parallel Manipulators in Point-to-Point Motion

Planning robot trajectory is a complex task that plays a significant role in design and application of robots in task space. The problem is formulated as a trajectory optimization problem which is fundamentally a constrained nonlinear optimization problem. Open-loop optimal control method is proposed as an approach for trajectory optimization of cable parallel manipulator for a given two-end-po...

متن کامل

A Bayesian View on Motor Control and Planning

The problem of motion control and planning can be formulated as an optimization problem. In this paper we discuss an alternative view that casts the problem as one of probabilistic inference. In simple cases where the optimization problem can be solved analytically the inference view leads to equivalent solutions. However, when approximate methods are necessary to tackle the problem, the tight ...

متن کامل

Designing a quantum genetic controller for tracking the path of quantum systems

Based on learning control methods and computational intelligence, control of quantum systems is an attractive field of study in control engineering. What is important is to establish control approach ensuring that the control process converges to achieve a given control objective and at the same time it is simple and clear. In this paper, a learning control method based on genetic quantum contr...

متن کامل

A class of multi-agent discrete hybrid non linearizable systems: Optimal controller design based on quasi-Newton algorithm for a class of sign-undefinite hessian cost functions

 In the present paper, a class of hybrid, nonlinear and non linearizable dynamic systems is considered. The noted dynamic system is generalized to a multi-agent configuration. The interaction of agents is presented based on graph theory and finally, an interaction tensor defines the multi-agent system in leader-follower consensus in order to design a desirable controller for the noted system. A...

متن کامل

Adaptive Probabilistic Trajectory Optimization via Efficient Approximate Inference

Robotic systems must be able to quickly and robustly make decisions when op-erating in uncertain and dynamic environments. While Reinforcement Learning(RL) can be used to compute optimal policies with little prior knowledge about theenvironment, it suffers from slow convergence. An alternative approach is ModelPredictive Control (MPC), which optimizes policies quickly, but also ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016